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In training student perceptions, recourse to information theory concepts allows one to select the best working
hypothesis and obtain an exact solution for the associated probability distribution. We apply this training
scheme to perceptions with binary weights and show that no phase transition ensues. By recourse to our
approach fast learning is guaranteed and trapping by spurious local minima is avoided.@S1063-
651X~96!07505-8#

PACS number~s!: 87.10.1e, 05.20.2y, 02.70.2c

I. INTRODUCTION

Neural networks have been proposed as models for many
cognitive functions; associative memory, generalization, cat-
egorization, etc.. These functions appear as epiphenomena
~emergent collective behavior! of the interconnected neural
system. A well-documented situation is that of systems able
to ‘‘learn’’ from examples. Great progress has been made by
recourse to techniques of statistical mechanics in analyzing
the performance of a student perceptron~SP! trained by a
teacher perceptron~TP! @1–3#.

Generalizationis a characteristic ability of feedforward
networks~the perceptron, in particular!. They exhibitinfer-
encecapacities, i.e., can produce outputs, corresponding to
newinputs~not previously presented by the TP!, on the basis
of an adequately selectedworking hypothesis~WH!. This
hypothesis is, of course, represented by a set of synaptic
weightsWi that, when appropriately implemented, yields
good generalization performance. Much effort has conse-
quently been devoted to the task of developing suitable train-
ing algorithms that are able to adjust the synaptic weights so
as to enable the network toinfer the correct answer when
presented with a new input.

In the present effort, a recently introduced@4,5# maximum
entropy method is applied to perceptrons with binary weights
@6,7#. We consider here perceptrons withN input unitsSi
connected to an output unitz whose state is determined ac-
cording toz5g~S•W!, whereg(x) is the~invertible! transfer
functionof the output neuron. We assume that the network
space is restricted to vectors that satisfy the normalization
( iWi

25N. For each set of weightsW the perceptron mapsS
on z. In order to select the WH for the SP, we infer the TP
state from the training set$Sm,z0

m%, with m51,•••,p, provided
by a TP with weightsW0, and transfer functiong0 ~our
available information!.

The usual training schemes are stochastic processes that
can be viewed as a random walk on the training energy land-
scape. The training energy is defined by

Et~W!5 (
m51

p

e~W,Sm!, ~1!

where e~W,S! is some measure of the deviation of the SP
answerg~S•W! from the TP one, represented byg0~S•W0!.
Levin, Tishby, and Sella@8#, have shown that the stationary
distribution of weightsP~W! is of a Gibbsian character:
Z21 exp@2Et(W)/T#. The training energy is, in most cases, a
complicated function ofW, with multiple valleys and hills.
In the (p,T) plane one encounters regions that contain an
enormous number of metastables states~as the result of a
strong frustration! @1#. The time required in order to sur-
mount the free energy barrier is of the order oft'eND f /T,
whereD f is the height of the free energy. Consequently,
regarded as arelaxation phenomenonthe training process
can be anabnormally slowone @9#. This, of course, consti-
tutes a serious difficulty if one wishes to optimize the set of
weights: the system can be trapped in a local minimum with
a subsequent poor generalization performance.

Here we intend to show that these troubles can be avoided
by recourse to information theory~IT! ideas @10,11#, that
have proved to be of utility in devising learning schemes@4#.
In the present effort, the training processwill not be regarded
as a relaxation phenomenon but rather as an inference opera-
tion. One wishes to infer theW state of the SP from the
information conveyed by the training set. Our specific sug-
gestion is that of adopting as a WH the configuration of
weights that maximizes the entropy associated with the con-
comitant probability distribution~PD!. This PD, in turn, is to
be obtained by recourse to IT ideas, within the framework of
Jaynes’ maximum entropy principle~MEP! @11#. More spe-
cifically: we wish to investigate the probability distribution
that ensues in that situation in whicheachmember of the
training set is regarded as a constraint~for the entropy maxi-
mization procedure! @4#.

The paper is organized as follows: in Sec. II we review
the MEP method for the obtention of the associated probabil-
ity distribution. Thea priori probability distribution is intro-
duced. In Sec. III we examine two differenta priori prob-
ability distributions and an interesting limit case is analyzed.
The generalization performance is discussed in Sec. IV, and
some conclusions are drawn in Sec. V.

II. THE MEP APPROACH

In IT parlance, a given~fixed! set of observables, referred
to as the ‘‘relevant’’ ones in order to build up the pertinent
statistical operator, constitutes the so-calledobservation level
@12#. In dealing with neural networks, one can use the infor-
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mation contained in the set of examples in many different
ways. Each of these leads to a different probability distribu-
tion which, of course, exhibits diverse properties. The stan-
dard choice is to consider just one observable, the training
energyEt , obtained by recourse to an expression that in-
volves the whole set of training examples@2#. The standard
observation level is then given just byEt . As our intention is
that of concentrating efforts on the selection of thebest
working hypothesis, our idea here is that of constructing a
more involved observation level that uses the information
contained in the training set in a more efficient fashion than
the standard one. Ifeachone ofp examples is regarded as a
constraint, we can indeed consider an observation level con-
sisting ofp observables.

The MEP is now employed@10,11# in order to determine
the probability distributionP~W! on the basis of the infor-
mation contained in the training set. We shall assume that
eachset of weightsW is realized with probabilityP~W!. In
other words, we introduce a normalized probability distribu-
tion over all possible setsW. Of course,

E P~W!dW51, ~2!

wheredW5dW1dW2•••dWN , and therelativeentropy is, in
the usual way@10,11#, associated to the probability distribu-
tion P~W!, i.e., the information measure~entropy! reads

H52E P~W!lnF P~W!

P0~W!GdW, ~3!

where P0~W! is an appropriatelya priori distribution
@10,11,13#. The choice ofP0 depends on the assumptions
made concerning thea priori W distributions and does not
depend on the examples.

As stated, our main point is that of employing, in indi-
vidual fashion, each of thep examples of the training set@4#.
Thusp constraints are to be considered, given by

g21~z0
m!5Sm

•^W& ~4!

and ~3! is maximized subject to them@11#, which is tanta-
mount to search for the maximum of@11#

H852E H P~W!lnF P~W!

P0~W!G1l0P~W!

1~Sm! tl•WP~W!J dW, ~5!

wherel0 andl are Lagrange multipliers associated, respec-
tively, to the normalization condition~2! and to ourp con-
straints~4!. Variation ofH8 with respect toP~W! immedi-
ately yields

P~W!5exp@2~11l0!2G•W#P0~W!, ~6!

with G5~Sm!tl. This is thea posterioriprobability distribu-
tion, obtained from the MEP method. The Lagrange multi-
pliers are self-consistently determined from~4! onceP0 is
properly selected.

III. PERCEPTRON WITH BINARY COUPLING

A judicious selection of thea priori probability distribu-
tion P0 now becomes mandatory. In order to adequately se-
lect P0, we must rely on our knowledge concerning the TP
architecture. Two instances are to be considered.

~i! Assume first that nothing is known about PT weights.
According to IT strictures we choose, following@4,5#, P0 is
proportional to exp~2W•W/2a!. When we replace this
choice in Eq.~6! we obtain a Gaussian form for the prob-
ability distribution, centered in̂W&52aG, i.e.,

P~W!5
1

~2pa!N/2
expF2

1

2a
~W1aG!2G , ~7!

which is of the formZ21 exp@2bE#. The energy landscape
exhibits a single minimum and thea parameter can be re-
garded as a temperature. Both the definition ofG and of the
constraints~4! allow for the elimination of the Lagrange
multipliersl. One can thus express the^W& solely in terms
of the data set:

^W&5I ps~S
m!g21~z0

m!, ~8!

where I ps~S
m!5~Sm!t@Sm~Sm!t#21 is the Moore-Penrose

pseudoinverse@14#. We choose the only minimum in the
energy landscape as our working hypothesis. In this case, the
minimum is the most probable configuration of weights com-
patible with the constraints~4! and corresponds to the mean
value ~8!.

~ii ! If it is a priori known that the TP possesses binary
weights, it makes sense to examine the double-peaked prob-
ability distribution @15#

P05)
i

N H expF2
~Wi21!2

2a G1expF2
~Wi11!2

2a G J , ~9!

i.e., asoft form of an Ising constraint, which isa posteriori
found to be a quite adequate selection. Using~6! and~9! we
can express our probability distribution as the sum of two
Gaussians, weighted by, respectively,p i

65exp~6Gi!/
2 cosh~Gi!, i.e.,

P~W!5
1

~2pa!N/2 )
i51

N Fpi1expS 2
1

2a
~Wi1aGi11!2D

1pi
2expS 2

1

2a
~Wi1aGi21!2D G , ~10!

The a parameter cannot be regarded as a temperature, but
rather as an ‘‘Ising constraint smoothness parameter.’’ The
multipliers li are obtained after solvingN uncoupled equa-
tions in theGi , given by

I ps~S
m!g21~z0

m!1aG1tanh~G!50. ~11!

We will concentrate our attention upon the interesting
limit a→0, corresponding to that case in which the weights
are restricted to adopting values equal to61. In this impor-
tant limit the Gi can be expressed inanalytic fashion, in
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terms of the training set information. We have
G52tanh21@I ps~S

m!g21~z0
m!#, and the probability distribution

~10! acquires the appearance

P~W!5)
i

N

$pi
1d~Wi11!1pi

2d~Wi21!%, ~12!

where the coefficientsp i
6 are the probabilities of having the

i th weight adopting the61 values~d stands for Dirac’s dis-
tribution @16#!. These probabilities can also be expressed in
analytical fashion, for any invertibleg, i.e.,

pi
65

exp$6tanh21@$I ps~S
m!g21~z0

m!% i #%

2 cosh$tanh21@$I ps~S
m!g21~z0

m!% i #%
, ~13!

a result that does not depend upon the TP architecture~nei-
ther in what refers to the weightsW0 nor to the transfer
functiong0!. It dependssolelyon the training set and on the
SP transfer functiong. Table I lists the probabilities inferred
for some weights with different values ofa.

In facing the working hypothesis selection one has in
mind the fact that, of course, one deals with binary weights
and thus it does not make sense to use ‘‘nonbinary’’ quanti-
ties ~e.g., mean values! as a guide in our choice. We must
select a working hypothesis that maximizes~12! and thus
choose W so that, if p i

1.p i
2(p i

1,p i
2) then Wi51

~Wi521!. This recipe can be easily implemented. Just take

Wi5sgn@pi
12pi

2#

5sgn@$I ps~S
m!g21~z0

m!% i #. ~14!

IV. RESULTS

If one follows the evolution of both~i! the generalization
error and~ii ! the training error (Et) with the number of ex-
amples we obtain thelearning curves. In order to evaluate
the generalization performance the generalization error was
defined in terms of the distances between the desired outputs
z0

m and the actual outputszm corresponding to the given in-
putsS

eg~W!5
1

2 E dm~S!@g0~W0 ,S!2g~W,S!#2, ~15!

wheredm~S! denotes a measure in the input space. If the
inputs are distributed independently with zero mean value

and variance one, thendm(S)5P i(2p)21e2Si
2/2dSi , and

the generalization error can be expressed as an integral over
two Gaussian variablesx andy @1# given by

eg~W!5
1

2 E Dx Dy$g0~x!2g@~12R2!1/2y1Rx#%2,

~16!

whereR5N21W0•W andDx is a Gaussian measure. The
behavior of the generalization error is completely determined
by the order parameterR.

We examine the behavior ofeg in the different cases re-
ferred to above. In our simulation we deal withN580 and
average over 200 samples. Figure 1 depictseg , for the trans-
fer functiong0(x)5g(x)5tanh(x), in two situations:

~i! The TP is of a binary coupling type and we assume a
GaussianP0 ~dashed line!. The weights are given by~8!.

~ii ! We employ thea priori probability distribution~9!.
The working hypothesis is again that of maximum likelihood
and is given by~14!. The solid line in Fig. 1 displays the
associatedeg values.

In both instances~albeit, in diverse fashion! eg vanishes
whena51. If the SP and TP architectures are different, it is
impossible for the former toperfectlylearn rules. These rules
can accordingly be called realizable or not realizable, de-
pending upon whether perfect learning is~or is not! an at-
tainable goal. We consider the case in which the SP-transfer
function is not identical to that of the TP~see caption of Fig.
1!. In this case, the~R51!-value is reached fora51, buteg
~cf. Fig. 1, dotted line! does not vanish. Indeed, it steadily
diminishes and reaches a minimum valueemin , which de-
pends upon the concomitant transfer functions. On the other

TABLE I. Probabilities inferred (p i
1) for some weights fromp examples in a case for which

g0(x)5g(x)5tanh(x) andN530.

W0 p53 p56 p512 p521 p527 p530

1 0.5910 0.9711 0.7795 0.6949 0.8710 1
21 0.5189 0.6428 0.7130 0.2302 0.0117 0
21 0.2945 0.2761 0.3053 0.1159 0.1837 0
1 0.7993 0.5799 0.5843 0.7991 0.9827 1
1 0.5098 0.8356 0.8528 0.8193 0.8337 1

FIG. 1. Generalization error versusa for N580 and average
over 200 samples. An Isinga priori probability distribution is used
in obtaining the results depicted by the solid line. Instead, those of
the dashed line correspond to a GaussianP0. Results in a nonreal-
izable case withg0(x)5x andg(x)5tanh(x) are represented by the
dotted line.
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hand, no phase transition takes place here whena→0, in
contrast with what one finds by studying the replica symmet-
ric solution @1#.

As another example, we consider a situation for which the
unrealizability is due to a mismatch~in weight space! be-
tween TP and SP. Linear transfer functions are used, for the
sake of simplicity. We assume that the weightsW0 adopt
unrestricted real values, whereas the SP weights are re-
stricted toWi561. For a GaussianW0 distribution, the
maximal overlapRmax is obtained forW5sgn@W0#. In the
thermodynamic limit,Rmax5A2/p. The symmetric replica
solution @1# yields an asymptotic form foreg given by

eg5emin1
eminRmax

a
1O~a22!, ~17!

with emin512Rmax50.202. Ours is a totally different sce-
nario. We see thateg reaches a minimumemin for a51 ~see
Fig. 2!.

V. CONCLUSIONS

We conclude that that network’s performance is very sen-
sitive to the choice of oura priori probability distribution
~APPB!. Our approach takes advantage of this fact in the
sense of allowing for the introduction of our previous knowl-
edge concerning the nature of the TP weights in the APPB
choice. In particular, if one employs a double-peaked a priori
probability distribution, one can evaluate in analytical fash-
ion the probabilities associated to each weight in terms of the
available examples.

It is to be pointed out that our approach does not exhibit
the phase transitions characteristic of the symmetric replica
solution for the binary perceptron. Besides, at least in the
perceptron case here investigated, frustration appears to be
the result of poor ‘‘administrative management’’ of the

available information. Our IT approach enables us to effec-
tively employall the available information, aseachexample
is used as a constraint. The ensuing observation level be-
comes thus much richer than the standard one. Efficient man-
agement leads to better results, in neural network processes
as in the ‘‘real’’ world.
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FIG. 2. Generalization error with mismatched weights: the solid
line corresponds to our scheme and the dashed line to the symmet-
ric replica solution, withg0(x)5g(x)5x in both cases. The dotted
line corresponds tog0(x)5x andg(x)5tanh(x). Additional details
are as in Fig. 1.
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