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Neural network training without spurious minima

L. Diambr& and A. Plastind
Physics Department, National University La Plata, Casilla de Correro 727, 1900 La Plata, Argentina
(Received 2 January 1996

In training student perceptions, recourse to information theory concepts allows one to select the best working
hypothesis and obtain an exact solution for the associated probability distribution. We apply this training
scheme to perceptions with binary weights and show that no phase transition ensues. By recourse to our
approach fast learning is guaranteed and trapping by spurious local minima is avQ®H6E3-
651X(96)07505-9

PACS numbsgps): 87.10+¢€, 05.20-y, 02.70—c

I. INTRODUCTION where W,S) is some measure of the deviation of the SP
answerg(S-W) from the TP one, represented gy(S-W).
Neural networks have been proposed as models for markevin, Tishby, and Sell@8], have shown that the stationary
cognitive functions; associative memory, generalization, catdistribution of weightsP(W) is of a Gibbsian character:
egorization, etc.. These functions appear as epiphenomeda - €Xd —E(W)/T]. The training energy is, in most cases, a
(emergent collective behavioof the interconnected neural complicated function ofV, with multiple valleys and hills.

system. A well-documented situation is that of systems ablé? the (p,T) plane one encounters regions that contain an

to “learn” from examples. Great progress has been made b%normous number of metastables stdi@s the result of a

recourse to techniques of statistical mechanics in analyzing'ong frustration [1]. The time required in order to sur-

: ount the free energy barrier is of the ordertefeN*"T,
:ZZcﬁirrf%reTsen&?og;p? [sﬁ%]e Nt percepti@® trained by a where Af is the height of the free energy. Consequently,

Generalizationis a characteristic ability of feedforward regarded as aelaxation phenomenothe training process

rworks(th ¢ . i Th hibitinf can be ambnormally slowone[9]. This, of course, consti-
networks(the perceptron, in particularThey exhibitinfer- 4053 serious difficulty if one wishes to optimize the set of
encecapacities, i.e., can produce outputs, corresponding t

: i N8 Qeights: the system can be trapped in a local minimum with
newinputs(not previously presented by the JT®n the basis 4 subsequent poor generalization performance.

of an adequately selectadlorking hypothesisWH). This Here we intend to show that these troubles can be avoided
hypothesis is, of course, represented by a set of synaptigy recourse to information theor§iT) ideas[10,11], that
weights W; that, when appropriately implemented, yields have proved to be of utility in devising learning scherfés
good generalization performance. Much effort has consem the present effort, the training procesil not be regarded
quently been devoted to the task of developing suitable traings a relaxation phenomenon but rather as an inference opera-
ing algorithms that are able to adjust the synaptic weights sgon. One wishes to infer th&V state of the SP from the
as to enable the network tafer the correct answer when information conveyed by the training set. Our specific sug-
presented with a new input. _ _ gestion is that of adopting as a WH the configuration of

In the present effort, a recently introduded5] maximum  \yeights that maximizes the entropy associated with the con-
entropy method is applied to perceptrons with binary weightgomitant probability distributioiPD). This PD, in turn, is to
[6,7]. We consider here perceptrons withinput unitsS;  pe obtained by recourse to IT ideas, within the framework of
connected to an output unftwhose state is determined ac- Jaynes’ maximum entropy principl®EP) [11]. More spe-
cording tof=g(S-W), whereg(x) is the(invertible) transfer  cifically: we wish to investigate the probability distribution
function of the output neuron. We assume that the networkhat ensues in that situation in whigmch member of the
space is restricted to vectors that satisfy the normalizatioqyaming set is regarded as a constrdfot the entropy maxi-
EiWi2= N. For each set of weigh¥/ the perceptron maf8  mization procedunel4].
on {. In order to select the WH for the SP, we infer the TP The paper is organized as follows: in Sec. Il we review
state from the training s¢6,{g}, with u=1,---,p, provided  the MEP method for the obtention of the associated probabil-
by a TP with weightsW,, and transfer functiorgo (our ity distribution. Thea priori probability distribution is intro-
available information _ duced. In Sec. Ill we examine two differeatpriori prob-

The usual training schemes are stochastic processes thaility distributions and an interesting limit case is analyzed.
can be viewed as a random walk on the training energy landrhe generalization performance is discussed in Sec. IV, and

scape. The training energy is defined by some conclusions are drawn in Sec. V.
p
Il. THE MEP APPROACH
B(W)= 2 e(W,S"), (1)
=
In IT parlance, a giveiffixed) set of observables, referred
to as the “relevant” ones in order to build up the pertinent
*Electronic address: diambra@venus.fisica.unlp.edu.ar statistical operator, constitutes the so-cathedervation level
"Electronic address: plastino@venus.fisica.unlp.edu.ar [12]. In dealing with neural networks, one can use the infor-
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mation contained in the set of examples in many different lll. PERCEPTRON WITH BINARY COUPLING
ways. Each of these leads to a different probability distribu- S . o G
tion which, of course, exhibits diverse properties. The Stan'ior?Iiudr:glv?/ut?escilr?glsonm;);égi)rpn?:: grrggragl'zjg'slj;?; se-
dard choice is to consider just one observable, the trainin%;ect PO we must relv on our anWIed e concernig theyTP
energy E,, obtained by recourse to an expression that in- 0 y 9 9

volves the whole set of training examplgd. The standard arc(ri])lti\(;t;:(reﬁe-rm\‘/ivrcs)tl?ﬁ;?r;%iﬁir?reist,okggvf/:n?r;st;gﬁiegf weights
observation level is then given just By . As our intention is 9 ghts.

that of concentrating efforts on the selection of thest According to IT strictures we choose, followiid, 5], Py is

. . : : . roportional to exp—W-W/2a). When we replace this
working hypothesis, our idea here is that of constructing aghoice in Eq.(6) we obtain a Gaussian form for the prob-

more involved observation level that uses the information bilitv distributi tered iGW)=—ar’, i
contained in the training set in a more efficient fashion tharfoMy distrioution, centered | at, e,
the standard one. Bachone ofp examples is regarded as a 1 1
constraint, we can indeed consider an observation level con- = - 2
sisting of p observables. P(W) (2ma)" ex;{ 2a WHaDh)
The MEP is now employefil0,11] in order to determine

the probability distributionP(W) on the basis of the infor- Which is of the formz~*exd—BE]. The energy landscape
mation contained in the training set. We shall assume tha@xhibits a single minimum and the parameter can be re-
eachset of weightsW is realized with probabilityP(W). In ~ garded as a temperature. Both the definitio’adnd of the

other words, we introduce a normalized probability distribu-constraints(4) allow for the elimination of the Lagrange

tion over all possible set#/. Of course, multipliers A. One can thus express tki¢&/) solely in terms
of the data set:

f P(W)dwW=1, 2 (W)=1,(S")97 (28, 8

. )

wheredW =dW,;dW,:--dWj, and therelativeentropy is, in ~ where 1,(S*)=(S"'[$%S*)']™* is the Moore-Penrose
the usual way10,11], associated to the probability distribu- pseudoinversg14]. We choose the only minimum in the
tion P(W), i.e., the information measufentropy reads energy landscape as our working hypothesis. In this case, the
minimum is the most probable configuration of weights com-
P(W) patible with the constraint§}) and corresponds to the mean
Po(W) dw, ) value(®).
(i) If it is a priori known that the TP possesses binary
where PyW) is an appropriatelya priori distribution weights, it makes sense to examine the double-peaked prob-

[10,11,13. The choice ofP, depends on the assumptions aPility distribution[15]
made concerning tha priori W distributions and does not

Hz—f P(W)In

depend on the examples. 5 _ﬁ (Wi 1)? . (Wi 1)2 9
As stated, our main point is that of employing, in indi- o— L ex 2a ex 2a )
vidual fashion, each of thp examples of the training spt].
Thusp constraints are to be considered, given by i.e., asoftform of an Ising constraint, which ia posteriori
1 found to be a quite adequate selection. Usi@gand (9) we
9 (L5 =5"(W) (4 can express our probability distribution as the sum of two

) o ) S Gaussians, weighted by, respectivelyy;"=exp(+I})/
and (3) is maximized subject to theifilL1], which is tanta- 2 cosHT)), i.e.,

mount to search for the maximum pf1]

1 N . 1
H'= _f [P(W)'” D noPw) PW)= 5wz L1 | p exp( ~ 55 (Wital +1)2
Po(W)
_ 1
+(S/*)IA.WP(W)] dw, (5) +p; ex;{ ~a (Wi +al,—1)2| |, (10)

where), and\ are Lagrange multipliers associated, respec-1N€ @ parameter cannot be regarded as a temperature, but
tively, to the normalization conditiof2) and to ourp con- rathgr as an Ising cqnstralnt smoolthness parameter.” The
straints(4). Variation of H’ with respect toP(W) immedi- multipliers \; are obtained after solvinly uncoupled equa-

ately yields tions in thel’;, given by
P(W)=exd —(1+Xo) —I'-W]Po(W), (6) lps(S*)g ™ *(¢6) +al+tanHT) =0. (11)
with T'=(S*)'\. This is thea posterioriprobability distribu- We will concentrate our attention upon the interesting

tion, obtained from the MEP method. The Lagrange multi-limit a—0, corresponding to that case in which the weights
pliers are self-consistently determined frd#) once Py is  are restricted to adopting values equatta. In this impor-
properly selected. tant limit the I'; can be expressed ianalytic fashion in
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TABLE |. Probabilities inferred ;") for some weights fronp examples in a case for which
Jo(X) =g(x)=tanhx) andN=30.

Wy p=3 p=6 p=12 p=21 p=27 p=30
1 0.5910 0.9711 0.7795 0.6949 0.8710 1

-1 0.5189 0.6428 0.7130 0.2302 0.0117 0

-1 0.2945 0.2761 0.3053 0.1159 0.1837 0
1 0.7993 0.5799 0.5843 0.7991 0.9827 1
1 0.5098 0.8356 0.8528 0.8193 0.8337 1

terms of the training set information. We have 1 ,
I'=—tanh {1,4(S)g " (¢4)], and the probability distribution ~ €g(W)=3 f Dx Dy{go(x) —g[(1—R*)y+Rx]}?,
(10) acquires the appearance (16)

N
P(W)= H {pi+ S(W+1)+p; 8(W;— 1)}, (12) where R= N’1W0-W and Dx is a Gaussian measure. The

i behavior of the generalization error is completely determined
by the order parameteR.

We examine the behavior ef in the different cases re-
ferred to above. In our simulation we deal with=80 and
rklverage over 200 samples. Figure 1 depigtsfor the trans-
fer functiongy(x) = g(x) =tanh(), in two situations:

where the coefficientp;~ are the probabilities of having the
ith weight adopting the-1 values(é stands for Dirac’s dis-
tribution [16]). These probabilities can also be expressed i

analytical fashion, for any invertiblg, i.e.,
1 1 gt (i) The TP is of a binary coupling type and we assume a
p= exp[itanh_l[{lps(S/‘)g _1(50)}']} , (13)  GaussiarP, (dashed ling The weights are given b{g).
2 cositanh™*[{l ,s(S*)9 ™ *(¢H) i1} (i) We employ thea priori probability distribution(9).
. . The working hypothesis is again that of maximum likelihood
a res.ult that does not depend upon the TP architechee 5.4 is given by(14). The solid line in Fig. 1 displays the
ther in what refers to the weighté/, nor to the transfer ,qqqciatedt. values.
function gg). It dependssolelyon the training set and on the In both i%lstance$albeit, in diverse fashione, vanishes
SP transfer functiog. Table I lists the probabilities inferred |\ henaw=1. If the SP and TP architectures aregdifferent it is
for some weights with different values of _ impossible for the former tperfectlylearn rules. These rules
In facing the working hypothesis selection one has incan accordingly be called realizable or not realizable, de-
mind the fact that, of course, one deals with b!nary We'ghtﬁ)ending upon whether perfect learning(& is noj an at-
and thus it does not make sense to use “nonbinary” quantitainaple goal. We consider the case in which the SP-transfer
ties (e.g,, mean valugsas a guide in our choice. We must f,ction is not identical to that of the T@ee caption of Fig.
select a working hypqthefls that Taxm'z(asz) and thus 1) | this case, théR=1)-value is reached for=1, but €
choose W so that, if pj >p; (pi <pi) then Wi=1 (¢ Fig 1, dotted ling does not vanish. Indeed, it steadily
(W;=—1). This recipe can be easily implemented. Just takeyiminishes and reaches a minimum valag,, which de-

_ ends upon the concomitant transfer functions. On the other
W, =sgrip; —p; ] P P

=sgri{l (S99~ (&)1 (14) 0.7
0.6 .
IV. RESULTS
0.5

If one follows the evolution of botlii) the generalization
error and(ii) the training error E;) with the number of ex- mc.o‘
amples we obtain théearning curvesIn order to evaluate 0.3
the generalization performance the generalization error was
defined in terms of the distances between the desired outputs
{f and the actual outputg* corresponding to the given in- 0.1
putsS 0

1
W)= [ du(STgoWo.H-oW.9P (19 o

. . FIG. 1. Generalization error versus for N=80 and average
mgig illf e(sc)iigt?irg)%t;: Z ?n:jnee;es:drgnlgytrﬁtr:ngg:osfnag:ﬁ I\f/;:;eé)ver 2(.)0. samples. An Isin@.priori probability d.istribution is used
. PR in obtaining the results depicted by the solid line. Instead, those of
and variance one, thedu(S)=1II;(27) 'e"%%dS, and  the dashed line correspond to a GausstgnResults in a nonreal-
the generalization error can be expressed as an integral ovigable case withy,(x) =x andg(x) =tanh(x) are represented by the

two Gaussian variables andy [1] given by dotted line.
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hand, no phase transition takes place here waer0, in 1.4 ‘
contrast with what one finds by studying the replica symmet- y
ric solution[1]. 1.2 \

As another example, we consider a situation for which the
unrealizability is due to a mismatclin weight spacg be-
tween TP and SP. Linear transfer functions are used, for the @0-
sake of simplicity. We assume that the weightg, adopt P
unrestricted real values, whereas the SP weights are re-
stricted toW;==1. For a GaussiaW distribution, the 0.
maximal overlapR,,,, is obtained forW=sgrfW,]. In the
thermodynamic limit,Ry.=v2/7. The symmetric replica

T~

o

SN

EN

solution[1] yields an asymptotic form fog, given by 0
0 0.2 0.4 0.6 0.8 1
€minRmax _> /N
€g=€mint T+O(a ), 17 p

FIG. 2. Generalization error with mismatched weights: the solid
with €nin=1—R=0.202. Ours is a totally different sce- line corresponds to our scheme and the dashed line to the symmet-
nario. We see tha¢; reaches a minimune,,, for «=1 (see  ric replica solution, withgy(x) =g(x) =x in both cases. The dotted
Fig. 2. line corresponds tgy(x) =x andg(x) =tanh(x). Additional details

are as in Fig. 1.

V. CONCLUSIONS
, . available information. Our IT approach enables us to effec-
. _We conclude t_hat that netwc_)rk_ S perfor_njanc_e IS VEry S€Ntively employall the available information, asachexample
sitive to the choice of oun priori probability distribution ;s sed as a constraint. The ensuing observation level be-
(APPB). Our approach takes advantage of this fact in the;omes thus much richer than the standard one. Efficient man-

sense of allowing for the introduction of our previous knowl- 4gement leads to better results, in neural network processes
edge concerning the nature of the TP weights in the APPBg i, the “real” world.

choice. In particular, if one employs a double-peaked a priori

probability distribution, one can evaluate in analytical fash-
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